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Abstract. We present a method to approximate the solution mapping of parametric constrained
optimization problems. The approximation, which is of the spectral stochastic finite element type,
is represented as a linear combination of orthogonal polynomials. Its coefficients are determined by
solving an appropriate finite-dimensional constrained optimization problem. We show that, under
certain conditions, the latter problem is solvable because it is feasible for a sufficiently large degree
of the polynomial approximation and has an objective function with bounded level sets. In addition,
the solutions of the finite dimensional problems converge for an increasing degree of the polynomials
considered, provided that the solutions exhibit a sufficiently large and uniform degree of smoothness.
We demonstrate that our framework is applicable to one-dimensional parametric eigenvalue problems
and that the resulting method is superior in both accuracy and speed to black-box approaches.
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1. Introduction. This paper is concerned with the application of stochastic
finite-element methods to the determination of the parametric variation of the solution
of parametric constrained optimization. Parametric problems appear in a variety
of circumstances, and, relevant to this work, when the parameters of the problem
are uncertain [14]. Applications of parametric problems include elastoplasticity [1],
radioactive waste disposal [16], elasticity problems [14], disease transmission [3], and
nuclear reactor safety assessment [20].

In parametric uncertainty analysis of nonlinear equations, the problem is to char-
acterize the dependence with respect to parameters of the solution of a nonlinear
equation F (x, ω) = 0, x ∈ Rn, ω ∈ Ω ⊂ Rm, F : Rn × Rm → Rn. In addition,
the function F (·, ·) is smooth in both its arguments. Under the assumption of non
singularity of ∇xF (x, ω) in a sufficiently large open set that contains (x0, ω0), one can
determine a smooth mapping x(ω) that satisfies x(ω0) = x0 and F (x(ω0), ω0). The
essence of parametric uncertainty analysis is to characterize the mapping x(ω) either
by approximating it to an acceptable degree or by computing some of its integral
characteristics, such as averages with appropriate weighting functions.

Perhaps the most widespread approach in carrying out this endeavor is the use
of some form of the Monte Carlo method [18, 24]. In this approach, the parameter ω
is interpreted as a random variable with an appropriate probability density function,
and either the probability density function of x(ω) is approximated or computed,
or appropriate averages Eω [g(x(ω))] are computed for suitable expressions of the
multidimensional merit function g. Here Eω is the expectation operator with respect
with the probability density function of ω. In the Monte Carlo approach, values for
x(ω) are produced for an appropriate set of sample points ωi, in which case for each
sample point the original nonlinear problem must be solved for its argument x.
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Recently, there has been substantial interest in carrying out the analytical com-
putation as far as possible in characterizing the mapping x(ω). The component of this
endeavor that is relevant to this work is the spectral stochastic finite element (SFEM)
method [14, 13]. In this method, the mapping x(ω) is approximated by a Fourier-
type expansion with respect to a basis of polynomials P0(ω), P1(ω), . . . , PMK

(ω)
that are orthogonal with respect to the probability density function of ω, that is
Eω (Pi (ω) Pj (ω)) = δij , 0 ≤ i, j ≤ MK . For x0, x1 . . . xMK

∈ Rn, one defines the

spectral approximation x̃(ω) = x̃(ω;x0, x1, . . . xMK
) =

MK∑
i=0

xiPi(ω), and the SFEM

formulation is obtained by determining the vectors x∗0, x
∗
1 . . . x∗MK

that satisfy the
Galerkin projection conditions

Eω (F (x̃(ω), ω) Pk(ω)) = 0n, k = 0, 1, . . . ,MK .

This procedure results in a nonlinear system of equations that is MK +1 times larger
than the original nonlinear system of equations for a given choice of the parameter
ω. The advantage over the Monte Carlo method is that once this nonlinear system of
equations is solved, the original nonlinear problem no longer needs to be solved. In
the SFEM approach one generates directly an approximation of the mapping x(ω),
and if either several of its momentum or its probability density function need to be
evaluated, then a Monte Carlo method can be used on the explicit approximation

x̃(ω) =
MK∑
k=0

x∗kPk(ω), without the need to solve any further system of nonlinear equa-

tions. Because the polynomials are used as the generators of the space over which
approximation is carried out and the parameter ω has a stochastic interpretation the
expansion defined by this approximation is called the chaos polynomial expansion [13].

Of course, the success of this method resides in the ability to suitably choose
the set of polynomials Pi so that the residual decreases rapidly for relatively small
values of MK , before the size of the Galerkin projected problem explodes, a situation
that occurs if one considers in the approximating set all the polynomials of degree
up to K and if m is large. Nonetheless, for cases where n is huge (as are the cases
originating in the discretization of partial differential equations) and m is relatively
moderate, the SFEM has shown substantially more efficiency compared to the Monte
Carlo approach, even when all polynomials of degree up to K were considered as
generators of the approximating subspace [1]. In this work, we choose as the basis for
the approximation the set of all polynomials of degree up to K, and we will defer the
investigation of choosing a smaller subset to future research.

Stochastic finite element approaches have been applied primarily to the problem
of parametric nonlinear equations [14, 13, 1, 6]. The object of this paper is to analyze
the properties of SFEM and its extensions when the original problem is a constrained
optimization problem. In this work we are not be interested in the stochastic aspect of
the method proper, but in possible ways of generating the approximation x̃(ω) and in
the properties of the resulting optimization problems. In this case, our work is perhaps
better described as spectral approximations for parametric constrained optimization
problems. Nonetheless, we will still refer to our method as SFEM, since generating
the approximation x̃(ω) is by far the most conceptually involved part of SFEM.

2. Background on Spectral Methods. In this section, we use the framework
from [9]. The choice of orthogonal polynomials is based on the scalar product

〈g, h〉W =
∫

Ω

W (ω)g(ω)h(ω)dω,
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where g, h are continuous functions from Rm to R. Here Ω ∈ Rm is a compact set
with a nonempty interior, and W (ω) is a weight function that satisfies the following.

1. W (ω) ≥ 0, ∀ω ∈ Ω.
2. Any multivariable polynomial function P (ω) is integrable, that is,∫

Ω

W (ω)|P (ω)|dω < ∞.

We define the semi norm

||g||W =
√
〈g, g〉W

on the space of continuous functions. If, in addition, ||g||W = 0 ⇒ g = 0, then ||·||W
is a norm. We will concern ourselves only with this case, in which we denote by
L2

W = L2
W (Ω) the completion of the space of continuous functions whose norm ||·||W

is finite.
With respect to the scalar product 〈·, ·〉W , we can orthonormalize the set of poly-

nomials in the variable ω. We obtain the orthogonal polynomials Pi(ω) that satisfy
the following.

• 〈Pi, Pj〉W = δij , 0 ≤ i, j. By convention, we always take P0 to be the constant
polynomial.

• The set {Pi}i=0,1,2,... forms the basis of the complete space L2
W .

• If k1 ≤ k2, then deg (Pk1) ≤ deg (Pk2). To simplify our notation, we introduce
the definition

MK = max{k|deg(Pk) ≤ K}.

We define L2
p,W = L2

W ⊗ L2
W ⊗ . . . L2

W︸ ︷︷ ︸
p

. We use the notation L2
W = L2

p,W when the

value of p can be inferred from the context. The Fourier coefficients of a function
f : Ω → Rp are defined as

ck(f) =
∫

Ω

fPk(ω)W (ω)dω ∈ Rp, f ∈ L2
W , k = 0, 1, . . . ,

and they satisfy Bessel’s identity [9]

f ∈ L2
W ⇒

∞∑
k=0

||ck(f)||2 =
∫

Ω

||f(ω)||2 = ||f ||2W . (2.1)

The projection of a function f ∈ L2
W onto the space of the polynomials of degree at

most K can be calculated as [9]

ΠK
W (f) =

MK∑
k=0

ck(f)Pk(ω).

The most common type multidimensional weight function is probably the one of the
separable type, that is, W (ω1, ω2, . . . , ωm) =

∏m
i=1 wi(ωi). In this case, the orthogonal

polynomials can be chosen to be products of orthogonal polynomials in each individual
variable [5, 9]. We refer to such orthogonal polynomials as tensor products. The
case Ω = [−1, 1]m, with wi(x) = 1

2 , i = 1, 2, . . . ,m is the one of tensor Legendre
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polynomials, whereas the one with wi(x) = 1
π
√

1−x2 , i = 1, 2, . . . ,m is the one of
Chebyshev polynomials [5].

Following the multidimensional Jackson theorem [12, Theorem 2], there exists a
parameter C that depends only on the function f such that

Dαf(ω) are Lipschitz ∀α ∈ Nm, ||α||1 = q − 1 =⇒
∣∣∣∣f −ΠK

W (f)
∣∣∣∣

W
≤ C

1
Kq

. (2.2)

Here, we denote by Dα the derivative of multiindex α = (α1, α2, . . . , αm) ∈ Nm,

Dα(f) =
∂

Pm
i=1 αif

∂ωα1
1 ∂ωα1

2 . . . ∂ωαm
m

.

If m = 1, then the polynomial functions are polynomials of only one variable, and we
can obtain an orthonormal family that satisfies deg Pk = k, and MK = K + 1.

In addition, a reciprocal of (2.2) holds in certain circumstances. There exists a
parameter t that depends only on W (x) and on m such that

max
{
||f ||∞ ,

∣∣∣∣∣∣∣∣ ∂f

∂ω1

∣∣∣∣∣∣∣∣
∞

,

∣∣∣∣∣∣∣∣ ∂f

∂ω2

∣∣∣∣∣∣∣∣
∞

, . . . ,

∣∣∣∣∣∣∣∣ ∂f

∂ωm

∣∣∣∣∣∣∣∣
∞

}
≤ CS

∞∑
k=0

||ck(f)||deg(Pk)t < ∞.

(2.3)
Indeed, for tensor Legendre and Chebyshev polynomials such a conclusion follows by
techniques described in [5] from choosing an appropriate t, computing the Sobolev
norm of weak derivatives of f whose projection can be explicitly computed for either
case followed by an application of Sobolev’s theorem.

Finally, for some orthogonal polynomial families, the following holds.

ΛK = sup
ω∈Ω

√√√√MK∑
k=0

(Pk(ω))2 ≤ CΛMK
d, (2.4)

where d and CΛ are parameters, depending on m, Ω, but not on K. For tensor-
product Chebyshev polynomials, and Ω = [−1, 1]m, it is immediate that CΛ = 1 and
d = m

2 . For tensor-product Legendre polynomials, one can choose d = m, following the
properties of separable weight functions [9, Proposition 7.1.5] as well as the asymptotic
properties of ΛK for the Legendre case when m = 1 [21, Lemma 21].

In addition, for the case where∫
Ω

W (ω)d(ω) = 1,

we can interpret W (ω) as a probability density function (this case can be achieved
for any weight function after rescaling with a constant). In that case, we may refer
to ω as a random variable, and it is the case we treat in this work.

Notations The expectation of a function f(ω) of the random variable is

Eω [f(ω)] =
∫

Ω

f(ω)W (ω)dω
∆= 〈f(ω)〉 .

The last notation is useful to compact mathematical formulas. Note that the symbol
of the scalar product includes a comma (< ·, · >). We use ||u|| to denote the Euclidean
norm of a vector u ∈ Rp. For f : Ω → Rp, the quantity ||f ||W = ||f(ω)||W is the L2

W

norm, defined in (2.1), whereas ||f(ω)||∞ = ||||f(ω)||||∞.
When proving an inequality or equality, we will display on top of the respective

sign the equation that justifies it. For example
(2.1)
= is an identity justified by Bessel’s

identity (2.1).
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3. Constrained Optimization Problems. Consider the following constrained
optimization (O) problem

(O)
x(ω) = arg minx f(x, ω)

subject to g(x, ω) = 0p.

Here, the function g : Rn × Rm → Rp. We are interested in approximating the
mapping x(ω), where ω ∈ Ω.

3.1. SFEM formulations. An SFEM formulation can be obtained by writing
the optimality conditions for the problem (O) after we introduce the Lagrange mul-
tiplier mapping λ(ω) : Ω → Rm, followed by the procedure outlined in [14]. The
optimality conditions result in

∇xf(x(ω), ω) + λT (ω)∇xg(x(ω), ω) = 0n

g(x(ω), ω) = 0p.
(3.1)

We introduce the SFEM parametrization of the approximation

x̃K(ω) =
MK∑
k=0

xkPk(ω), λ̃K(ω) =
MK∑
k=0

λkPk(ω).

Here, we have that the coefficients of the expansion satisfy xk ∈ Rn and λk ∈ Rp,
k = 0, 1, 2, . . .. The procedure outlined in [14] results in the following system of
nonlinear equations〈

Pk(ω)
(
∇xf(x̃K(ω), ω) +

(
λ̃K(ω)

)T

∇xg(x̃K(ω), ω)
)〉

= 0n,〈
Pk(ω)g(x̃K(ω), ω)

〉
= 0p,

 0 ≤ k ≤ MK .

(3.2)
We could try to solve the equations (3.2) in order to obtain the SFEM approxi-

mation. Once we do that, however, we face the problem of determining whether the
resulting system of nonlinear equations has a solution, and how we can determine it.
One could imagine that certain results can be proved under the assumption that the
solution of (O), x̃∗(ω), has sufficiently small variation. A result of this type will be
shown in Subsection 3.3 though for weaker assumptions than the small variation of
the solution. But more important from a practical perspective, we started with an
optimization structure to our original problem (O) and, at first sight, the equations
(3.2) do not have an optimization problem structure. This situation restricts the type
of algorithms that we could use to solve the problem. Nonetheless, this difficulty
is only superficial, as shown by the following theorem, which relates the solution of
the nonlinear equations (3.2) to the solution of the following stochastic optimization
problem:

(SO(K))
min{xk}k=0,1,...,MK

〈f(x̃(ω), ω)〉
〈g(x̃(ω), ω)Pk(ω)〉 = 0p, k = 0, 1, . . . ,MK .

Theorem 3.1. Consider the coefficients x̂0, x̂1, . . . , x̂MK
that are a solution of

the minimization problem (SO(K)) and assume that they satisfy the KKT conditions
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with the Lagrange multipliers λ̂0, λ̂1, . . . , λ̂MK
. With these coefficients and multipliers

we define the functions

x̂K(ω) =
∑

k=0,1,...,MK

x̂kPk(ω), λ̂K(ω) =
∑

k=0,1,...,MK

λ̂kPk(ω).

Then, x̂(ω) and λ̂(ω) satisfy the equations (3.2), assuming that f and g have Lipschitz
first derivatives.

Proof The optimality conditions for (SO(K)), that are satisfied by the solution,
since the constraint qualifications holds [19], result, for a fixed k ∈ {0, 1, . . . ,MK}, in

0n = ∇xk

〈
f(x̂K(ω), ω)

〉
+∇xk

∑
k′=0,1,...,MK

λ̂T
k′

〈
g(x̂K(ω), ω)Pk′(ω)

〉

= ∇xk

〈
f(x̂K(ω), ω)

〉
+∇xk

〈 ∑
k′=0,1,...,MK

Pk′(ω)λ̂k′

 g(x̂K(ω), ω)

〉

= ∇xk

〈
f(x̂K(ω), ω) +

(
λ̂K(ω)

)T

g(x̂K(ω), ω)
〉

=
〈

Pk(ω)
(
∇xf(x̂K(ω), ω) +

(
λ̂K(ω)

)T

∇xg(x̂K(ω), ω)
)〉

,

where we have used the fact that the expectation operator commutes with multipli-
cation with a parameter. We have also used the fact that f and g have Lipschitz
continuous derivatives, which allows us to interchange the derivative and the expec-
tation operator.

The last equation represents the first set of equations in (3.2) for x̂K(ω) and
λ̂K(ω). Since the second set of equations must be satisfied from the feasibility condi-
tions, the proof of the theorem is complete. 2

The preceding theorem represents the main practical advance brought by this
work, because it provides an alternative way of formulating the stochastic finite-
element approximation when the original problem has an optimization structure. The
computational advantage of the formulation (SO(K)) over the nonlinear equation
formulation (3.2) is that it preserves the optimization structure and allows one to use
optimization software that is guaranteed to obtain a solution of (3.2) under milder
conditions than solving the nonlinear equation directly.

3.2. Assumptions. Our goal is to show that, under certain assumptions, a
solution of (SO(K)) approximates a solution of (O). A key step is to ensure that
the problem (SO(K)) has a feasible point whose Jacobian of the constraints is well
conditioned in the neighborhood of x̃∗(ω), the solution of the problem (O). As we will
later see, this result, in addition to a bounded level set condition, will be the key to
ensuring that (SO(K)) is feasible and, in turn, that (SO(K)) has a solution.

An important result is the following.
Theorem 3.2 (Kantorovich’s theorem for nonsquare systems of equations, [7,

23]). Assume that f : X → Y is defined and differentiable on a ball
B = {x| ||x− x0|| ≤ r}, and assume that its derivative F (x) satisfies the Lipschitz
condition on B:

||F (x)− F (z)|| ≤ L ||x− z|| ,∀x, z ∈ B.



Spectral Stochastic FEM For Optimization Problems 7

Here, X and Y are Banach spaces, F (x) maps X onto Y , and the following estimate
holds:

||F (x0)∗y|| ≥ µ ||y|| for any y ∈ Y (3.3)

with µ > 0 (the star denotes conjugation). Introduce the function H(t) =
∑∞

k=1 t2
k

,
and suppose that h = Lµ2||F (x0)||

2 < 1, ρ = 2H(t)
Lµ ≤ r. Then the equation F (x) = 0

has a solution that satisfies ||x− x0|| ≤ ρ. Note This result is stated slightly
differently in [23], where (3.3) is required for all x ∈ B. However, the purpose in
that reference is to prove a rate of convergence result for an iterative process. From
Graves’ theorem [7, Theorem 1.2] the Theorem 3.2 follows as stated. Note that for
Kantorovich’s Theorem for square systems [23](where the spaces X and Y are the
same), the condition corresponding to (3.3) is also stated only at x0.

We can immediately see that the nature of the constraints in (SO(K)) is quite
a bit different from the one of (O). It is clear how to assume well-posedness of the
constraints at the solution x̃∗(ω).

[A3] σmin (∇xg(x̃∗(ω), ω)) ≥ σm,∀ω ∈ Ω.

Here σmin is the smallest singular value of a given matrix. It is not clear how to
immediately translate [A3] into a proof of well-conditioning for the constraints of
(SO(K)):

〈g(x̃(ω), ω)Pk(ω)〉 = 0p, k = 0, 1, 2 . . . , MK ,

which we investigate in this section. We have that ∇xi

〈
g(x̃K(ω), ω)Pk

〉
are the blocks

of the Jacobian matrix at an SFEM approximation x̃K(ω). Since g(x, ω) has Lips-
chitz continuous derivatives from Assumption [A2] below and Ω is compact, we can
interchange the average and the differentiation and use the chain rule to obtain that
the blocks are

〈
∇xg(x̃k(ω), ω)PiPk

〉
.

Therefore, for fixed K, the Jacobian has dimension p(K + 1)× n(K + 1).

JK(x̃K) =


J00(x̃K) J01(x̃K) · · · J0K(x̃K)
J10(x̃K) J11(x̃K) · · · J1K(x̃K)

...
...

...
...

JK0(x̃K) JK1(x̃K) · · · JKK(x̃K)

 ,

where

Jij(x̃K) =
〈
∇xg(x̃k(ω), ω)Pi(ω)Pj(ω)

〉
∈ Rp×n, i, j = 0, 1, . . . ,K.

We want to show that the matrix JK is uniformly well-conditioned with respect
to K, for K sufficiently large, at x̃∗,K = ΠK

W (x̃∗). In that sense, we need to prove
that its smallest singular value is bounded below. To obtain such a bound, we need
a more workable expression for the minimum singular value. The minimum singular
value of a matrix B of dimension p× n is the following inf − sup condition [4]:

σmin = inf
λ∈Rp

sup
u∈Rn

λT Bu

||λ|| ||u||
= inf

λ∈Rp,||λ||=1
sup

u∈Rn,||u||=1

λT Bu.

To prove our results, we need to invoke several assumptions. One of the assump-
tions will involve a statement about functions that have bounded level sets. We say
that a function χ : R → R has bounded level sets if the sets Lχ

M = χ−1 ((−∞,M ])
are bounded for any M ∈ R.



8 M. Anitescu

A1 Uniformly bounded level sets assumption: There exist a function χ(·) that is
convex and nondecreasing, and that has bounded level sets and a parameter
γ > 0 such that

χ (||x||γ) ≤ f(x, ω), ∀ω ∈ Ω. (3.4)

A2 Smoothness assumption: The functions f(x, ω) and g(x, ω) have Lipschitz
continuous derivatives.

A4 The solution of the problem (O), x̃∗(ω) has Lipschitz continuous derivatives.
A5 There exists L > 0 such that ||∇xg(x1, ω)−∇xg(x2, ω)|| ≤ L (||x1 − x2||),

∀x1, x2 ∈ Rn.
A6 There exists a c such that∣∣∣∣(J̄K,Q(x̃∗)

)∣∣∣∣ ≤ c, ∀K, Q ∈ N.

Here,

J̄K,Q(x̃) =


J̄0,K+1(x̃) J̄0,K+2(x̃) · · · J̄0,K+Q(x̃)
J̄1,K+1(x̃) J̄1,K+2(x̃) · · · J̄1,K+Q(x̃)

...
...

...
...

J̄K,K+1(x̃) J̄K,K+2(x̃) · · · J̄K,K+Q(x̃)

 ,

where

J̄i,j(x̃) =
〈
∇xG†(ω)Pi(ω)Pj(ω)

〉
∈ Rp×n, i, j = 0, 1, 2, . . . ,

and G†(ω) ∈ Rn×p (the pseudoinverse) is a matrix-valued Lipschitz mapping
such that

∇xg(x̃∗(ω), ω)G†(ω) = Ip,
∣∣∣∣G†(ω)

∣∣∣∣ ≤ 1
σm

, ∀ω ∈ Ω. (3.5)

The pseudoinverse exists following Assumptions [A2],[A3], and [A4].
A7 cCG < 1

4 . Here CG > 0 is the smallest value that satisfies

||∇xg(x̃∗(ω), ω)|| ≤ CG, ∀ω ∈ Ω,

which exists following assumptions [A2] and [A4].
Discussion All the assumptions invoked here are standard fare except for [A7].

If the constraint function g(x, ω) is linear in x and does not depend on ω, then it
immediately follows that c = 0. Therefore the condition cCG ≤ 1

4 represents a small
variation assumption.

Notation We denote by x̃∗,K(ω) = ΠK
W x̃∗(ω).

3.3. Solvability and convergence results. Define now

GK
2 (λ, u) =

MK∑
i,j=0

λT
i

〈
Pi∇xg(x̃∗,K(ω), ω)Pj

〉
uj ,

GK = inf
λk ∈ Rp,

k = 0, 1, . . . ,K∑MK

i=0 ||λk||2 = 1

sup
uk ∈ Rn,

k = 0, 1, . . . ,K∑MK

j=0 ||uk||2 = 1

GK
2 (λ, u).
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Lemma 3.3. Define ΓK = A0 −A1

∣∣∣∣x̃∗ − x̃∗,K
∣∣∣∣
∞ −A2

∣∣∣∣x̃∗ − x̃∗,K
∣∣∣∣2
∞, where

A0 = 1− 4c2C2
G, A1 = 8c2CGL, and A2 = 4c2L2 + 2

L2

σ2
m

. (3.6)

Then, if ΓK > 0, it follows that cσm < 1 and

GK ≥
√

4ΓK

1
σ2

m
− c2

.

Notation For simplicity, we use the notation x̃ = x̃∗ and x̃K = x̃∗,K .
Proof Define

ΘK =

{
λ̃(ω) =

MK∑
i=0

λiPi(ω)

∣∣∣∣∣ λ ∈ Rp, i = 0, 1, . . . ,MK ,

MK∑
i=0

||λi||2 = 1

}
(3.7)

ΥK =

{
ũ(ω) =

MK∑
i=0

uiPi(ω)

∣∣∣∣∣ ui ∈ Rp, i = 0, 1, . . . ,MK ,

MK∑
i=0

||ui||2 = 1

}
(3.8)

It immediately follows from (2.1) that λ̃ ∈ ΘK implies that
∣∣∣∣∣∣λ̃(ω)

∣∣∣∣∣∣
W

= 1, and

ũ ∈ ΥK implies that ||ũ(ω)||W = 1. We will use ũ and λ̃ as the functional image of
{λk}k=0,1,...,MK

, and, respectively, {uk}k=0,1,...,MK
. We have that

GK
2 (λ, u) =

〈
λ̃(ω)T∇xg(x̃K(ω), ω)ũ(ω)

〉
.

We define Rn � enK = 1√
n(MK+1)

(1, 1, . . . , 1)T and

0 ≤ HK(λ̃) =
MK∑
i=0

∣∣∣∣∣∣〈λ̃T (ω)∇xg(x̃K(ω), ω)Pi(ω)
〉∣∣∣∣∣∣2 . (3.9)

We now define

uk =

{
1√
HK

〈
λ̃T (ω)∇xg(x̃K(ω), ω)Pi(ω)

〉
HK 6= 0

enK Hk = 0.
,

which results in ũ ∈ ΥK . With this choice we get that G(λ̃, ũ) = HK(λ̃), and, using
the expression of GK , we obtain that

GK ≥ infλ̃∈ΘK

√
HK(λ̃).

So we now proceed to bound below HK(λ̃).
From the definition of G†(ω), we have that

λ̃(ω)T = λ̃(ω)T∇xg(x̃(ω), ω)G†(ω), ∀ω ∈ Ω. (3.10)

Define

Rn � θi(λ̃) =
〈
λ̃(ω)T∇xg(x̃K(ω), ω)Pi(ω)

〉
Rn×p � µik(G†) =

〈
Pi(ω)G†(ω)Pk(ω)

〉
.
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We now discuss the well-posedness of the preceding quantities. Since λ̃ is a polynomial
and, from assumptions [A2] and [A4] the function λ̃T (ω)∇xg(x̃K(ω), ω) is continuous

and Ω is compact, it follows that
∣∣∣∣∣∣λ̃(ω)∇xg(x̃K(ω), ω)

∣∣∣∣∣∣2
W

< ∞. This, in turn, means

that θi(λ̃) is well defined (the integral that defines it is absolutely convergent), and

∑∞
i=0

∣∣∣∣∣∣θi(λ̃)
∣∣∣∣∣∣2 (2.1)

=
∣∣∣∣∣∣λ̃(ω)∇xg(x̃K(ω), ω)

∣∣∣∣∣∣2
W

=
〈∣∣∣∣∣∣λ̃(ω)∇xg(x̃K(ω), ω)

∣∣∣∣∣∣2〉
≤

〈∣∣∣∣∣∣λ̃(ω)
∣∣∣∣∣∣2 ∣∣∣∣∇xg(x̃K(ω), ω)

∣∣∣∣2〉
≤

∣∣∣∣∣∣λ̃(ω)
∣∣∣∣∣∣2

W

∣∣∣∣∇xg(x̃K(ω), ω)
∣∣∣∣2
∞

=
∣∣∣∣∇xg(x̃K(ω), ω)

∣∣∣∣2
∞ ≤

(
CG + L

∣∣∣∣x̃− x̃K
∣∣∣∣
∞

)2
,

(3.11)

where the last inequality follows from
∣∣∣∣∣∣λ̃(ω)

∣∣∣∣∣∣2
W

= 1 (since λ̃ ∈ ΘK), the triangle
inequality∣∣∣∣∇xg(x̃K(ω), ω)

∣∣∣∣
∞ ≤ ||∇xg(x̃(ω), ω)||∞ +

∣∣∣∣∇xg(x̃K(ω), ω)−∇xg(x̃(ω), ω)
∣∣∣∣
∞

≤ CG + L
∣∣∣∣x̃− x̃K

∣∣∣∣
∞ ,

and the notations from Assumptions [A5], and [A7].
From (3.10), using the extension of < h, l >W =

∑∞
i=0 ci(h)ci(l), that holds for

h, l ∈ L2
W , to matrix-valued mappings, we obtain that, for ∀k ≤ MK , we have that〈

Pkλ̃(ω)T
〉

=
∞∑

i=1

〈
λ̃(ω)T∇xg(x̃(ω), ω)Pi(ω)

〉
µik(G†) =

∞∑
i=1

θi(λ̃)T µik(G†) +〈
Pk(ω)λ̃(ω)T

(
∇xg(x̃(ω), ω)−∇xg(x̃K(ω), ω)

)
G†(ω)

〉
.

Since λ̃ ∈ ΘK and from the preceding equation, we have that

1 =
MK∑
k=0

∣∣∣∣∣∣〈Pk, λ̃(ω)T
〉∣∣∣∣∣∣2 ≤ 2

MK∑
k=0

∣∣∣∣∣
∣∣∣∣∣
∞∑

i=0

θi(λ̃)T µik(G†)

∣∣∣∣∣
∣∣∣∣∣
2

+ 2T3 ≤ 4(T1 + T2) + 2T3,

(3.12)
where the last two inequalities follow from the inequality ||a + b||2 ≤ 2(||a||2 + ||b||2)
applied twice and from Bessel’s identity (2.1) where

T1 =
MK∑
k=0

∣∣∣∣∣
∣∣∣∣∣
MK∑
i=0

θi(λ̃)T µik(G†)

∣∣∣∣∣
∣∣∣∣∣
2

T2 =
MK∑
k=0

∣∣∣∣∣
∣∣∣∣∣

∞∑
i=MK+1

θi(λ̃)T µik(G†)

∣∣∣∣∣
∣∣∣∣∣
2

T3 =
MK∑
k=0

∣∣∣∣∣∣〈Pk(ω)λ̃(ω)T
(
∇xg(x̃(ω), ω)−∇xg(x̃K(ω), ω)

)
G†(ω)

〉∣∣∣∣∣∣2 .

We now find upper bounds on T1, T2, and T3. We define θ̃(ω) =
∑MK

i=0 θi(λ̃)Pi(ω).
We obtain that

T1 =
MK∑
k=0

∣∣∣∣∣∣〈θ̃(ω)T G†(ω)Pk

〉∣∣∣∣∣∣2 (2.1)

≤
〈∣∣∣∣∣∣θ̃(ω)T G†(ω)

∣∣∣∣∣∣2〉 ≤
〈∣∣∣∣∣∣θ̃(ω)

∣∣∣∣∣∣2 ∣∣∣∣G†(ω)
∣∣∣∣2〉

by (3.5)

≤ 1
σ2

m

〈∣∣∣∣∣∣θ̃(ω)
∣∣∣∣∣∣2〉 (2.1)

=
1

σ2
m

MK∑
k=0

∣∣∣∣∣∣θk(λ̃)
∣∣∣∣∣∣2 (3.9)

=
HK(λ̃)

σ2
m

.
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Using [A6], we obtain that

T2 ≤ c2
∞∑

k=MK+1

∣∣∣∣∣∣θk(λ̃)
∣∣∣∣∣∣2 = c2

∞∑
k=0

∣∣∣∣∣∣θk(λ̃)
∣∣∣∣∣∣2 − c2

MK∑
k=0

∣∣∣∣∣∣θk(λ̃)
∣∣∣∣∣∣2

by (3.11), (3.9)

≤ c2
(
CG + L

∣∣∣∣x̃− x̃K
∣∣∣∣)2 − c2HK(λ̃).

Finally, using Bessel’s identity (2.1), Cauchy-Schwarz, [A5], and that
∣∣∣∣∣∣ ˜λ(ω)

∣∣∣∣∣∣
W

= 1,

which follows from λ̃ ∈ ΘK , we obtain that

T3

(2.1)

≤
∣∣∣∣∣∣λ̃(ω)T

(
∇xg(x̃(ω), ω)−∇xg(x̃K(ω), ω)

)
G†(ω)

∣∣∣∣∣∣2
W

≤
〈∣∣∣∣∣∣λ̃(ω)

∣∣∣∣∣∣2 ∣∣∣∣(∇xg(x̃(ω), ω)−∇xg(x̃K(ω), ω)
)∣∣∣∣2 ∣∣∣∣G†(ω)

∣∣∣∣2〉
by [A5],(3.5)

≤
(

L

σm

)2 ∣∣∣∣x̃− x̃K
∣∣∣∣2
∞ .

Replacing the bounds obtained for T1, T2, and T3 in (3.12), we obtain that

4HK(λ̃)
(

1
σ2

m

− c2

)
≥ ΓK = A0 −A1

∣∣∣∣x̃− x̃K
∣∣∣∣
∞ −A2

∣∣∣∣x̃− x̃K
∣∣∣∣2
∞ ,

where A0, A1, A2 are defined in (3.6). Since ΓK > 0 implies that A0 > 0, which in
turn implies that cCG < 1

4 , we get, from [A3], that cσm < 1
4 . The conclusion follows

from the preceding displayed inequality. 2

A key point of our analysis consists of obtaining bounds between
∣∣∣∣x̃K

∣∣∣∣
∞ and∣∣∣∣x̃K

∣∣∣∣
W

.
Lemma 3.4. ∣∣∣∣x̃K

∣∣∣∣
W
≤

∣∣∣∣x̃K
∣∣∣∣
∞ ≤ ΛK

∣∣∣∣x̃K
∣∣∣∣

W

Proof It is immediate that
∣∣∣∣x̃K

∣∣∣∣
W
≤

∣∣∣∣x̃K
∣∣∣∣
∞. We have, using Cauchy-Schwarz,

that

∣∣∣∣x̃K(ω)
∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣
MK∑
k=0

xkPk(ω)

∣∣∣∣∣
∣∣∣∣∣ ≤

MK∑
k=0

||xk|| |Pk(ω)| ≤

√√√√MK∑
k=0

||xk||2
√√√√MK∑

k=0

|Pk(ω)|2.

From the definition of ΛK , (2.4), we obtain that

sup
ω∈Ω

∣∣∣∣x̃K(ω)
∣∣∣∣ ≤ ΛK

∣∣∣∣x̃K(ω)
∣∣∣∣

W
,

which proves the claim. 2

Lemma 3.5.∣∣∣∣JK (x̃1(ω))− JK (x̃2(ω))
∣∣∣∣ ≤ LΛK ||x̃1(ω)− x̃2(ω)||W

Notation We will denote x̃1 = x̃1(ω), x̃2 = x̃2(ω).
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Proof By algebraic manipulations and notations similar to the ones in Lemma
3.3, we obtain that ∣∣∣∣JK (x̃1)− JK (x̃2)

∣∣∣∣ =

sup
λk ∈ Rp, uk ∈ Rn

k = 0, 1, . . . ,K∑MK

k=0 ||λk||2 = 1∑MK

k=0 ||uk||2 = 1

MK∑
i,j=0

λT
i 〈Pi (∇xg(x̃1, ω)−∇xg(x̃2, ω))Pj〉uj =

sup
λ̃∈ΘK ,ũ∈ΥK

〈
λ̃(ω)T (g(x̃1, ω)−∇xg(x̃2, ω)) ũ(ω)

〉 by [A5]

≤

L ||x̃2 − x̃1||∞ sup
λ̃∈ΘK ,ũ∈ΥK

〈∣∣∣∣∣∣λ̃(ω)
∣∣∣∣∣∣ ||ũ(ω)||

〉 Cauchy-Schwarz

≤ L ||x̃2 − x̃1||∞
by Lemma 3.4

≤

LΛK ||x̃2 − x̃1|| ,

which completes the claim. 2

Lemma 3.6. The objective function of the problem (SO(K)) has bounded level
sets.

Proof Take x̃K(ω) =
∑MK

k=0 xkPk(ω). Consider the level set of height M of
f̃K(x̃K) =

〈
f(x̃K(ω), ω)

〉
,

LK(M) =
{

(x0, x1, . . . , xMK
) ∈ RmMK

∣∣ f̃K (x̃) ≤ M
}

.

Using Assumption [A1], we obtain that, if (x0, x1, . . . , xMK
) ∈ LK(M), then

M > f̃
(
x̃K

)
=

〈
f

(
x̃K(ω), ω

)〉 [A1]

≥
〈
χ

(∣∣∣∣x̃K(ω)
∣∣∣∣γ)〉

by Jensen’s inequality

≥ χ
(〈∣∣∣∣x̃K(ω)

∣∣∣∣γ〉)
=⇒

〈∣∣∣∣x̃K(ω)
∣∣∣∣γ〉

∈ Lχ
M . (3.13)

We denote

Lγ
K = minPMK

k=0 ||xk||2=1

〈∣∣∣∣x̃K(ω)
∣∣∣∣γ〉

.

Since the unit ball BK ∈ Rn(MK+1), defined as

BK =

{
(x0, x1, . . . , xMK

) ∈ Rn(MK+1)
∣∣∣ MK∑

k=0

||xk||2 = 1

}
,

is a compact set, the quantity Lγ
K is well defined.

It also immediately follows that Lγ
K > 0, ∀K > 0. Indeed, if there existed a K

for which Lγ
K = 0, it would follow that for some choice of x0, x1, . . . , xK , such that∑MK

k=0 ||xk||2 = 1, we have that x̃K(ω) = 0, ∀ω ∈ Ω, which contradicts the fact that
Pk(ω) are linearly independent because they are a subset of a basis.

In return (3.13) results in χ
(
Lγ

K

(∑MK

k=0 ||xk||2
))

≤ M , which, in turn, results in(∑MK

k=0 ||xk||2
)
≤ χ−1(M)

Lγ
K

. Since we assumed that the function χ has bounded level
sets, the conclusion follows. 2
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Note Lemma 3.6 ensures that the solution of the systems of nonlinear equations
that defines the spectral stochastic finite element method [14, 13] does exist, at least
for the case where the system of nonlinear equations is derived from the optimality
conditions of an unconstrained optimization problem. The same result can be ob-
tained for constrained problems from Lemma 3.3 for all K when g(x, ω) is linear in x
and does not depend on ω, since [A7] is satisfied with c = 0. To our knowledge, this
is a new result for the case where the the variation of x̃∗(ω) is not necessarily small.

Lemma 3.7. Assume that
(a) limK→∞

∣∣∣∣x̃∗ −ΠK
W x̃∗

∣∣∣∣
∞ = 0 and

(b) that limK→∞ΛK
∣∣∣∣x̃∗ −ΠK

W x̃∗
∣∣∣∣

W
= 0.

For any r > 0, there exists K0 such that (SO(K)) has a feasible point x̄K(ω) that
satisfies

∣∣∣∣x̄K −ΠK
W x̃∗

∣∣∣∣
W
≤ r, ∀K ≥ K0.

Proof We seek to apply Kantorovich’s Theorem 3.2. With the notations in the
assumptions [A1]–[A7], and from the definition of GK preceding Lemma 3.3 and from
the definition of ΛK (2.4), it follows, using Lemma 3.5, that the conditions of the
theorem are satisfied at x̃∗,K = ΠK

W (x̃∗) provided the following two conditions hold:

(i) h =
LΛK

(
GK

)2
gK

2
< 1, (ii′) ρ =

2H(h)
LΛKGK

< r,

where gK =
√∑MK

k=0 ||〈g(x̃∗,K(ω), ω)Pk〉||2. Note that if h < 1
2 , we have that h ≤

H(h) ≤ 2h. Therefore a sufficient condition for the condition (ii) to hold is

(ii) 4GKgK < r.

We have that

(
gK

)2
=

MK∑
k=0

∣∣∣∣〈g(x̃∗,K(ω), ω)Pk

〉∣∣∣∣2 (2.1)

≤
∣∣∣∣g(x̃∗,K(ω), ω)

∣∣∣∣2
W

.

From Leibnitz-Newton and assumptions [A2] and [A4] we get

g(x̃∗,K(ω), ω) = g(x̃∗(ω), ω) +
∫ 1

0

∇xg(x̄(t, ω), ω)
(
x̃∗,K(ω)− x̃∗(ω)

)
dt,

where x̄(t, ω) = tx̃∗,K(ω) + (1 − t)x̃∗(ω). Since x̃∗(ω) is a solution of (O), for any
ω ∈ Ω, we get g(x̃∗(ω), ω) = 0, ∀ω ∈ Ω. Using Assumptions [A7] and [A5], we obtain
the following∣∣∣∣g(x̃∗,K(ω), ω)

∣∣∣∣ ≤ ∣∣∣∣x̃∗,K(ω)− x̃∗(ω)
∣∣∣∣ ∫ 1

0

(CG + L ||x̄(t, ω)− x̃∗(ω)||)dt

≤
(

CG +
L

2

∣∣∣∣x̃∗,K(ω)− x̃∗(ω)
∣∣∣∣) ∣∣∣∣x̃∗,K(ω)− x̃∗(ω)

∣∣∣∣ .

In turn, this implies that

gK ≤
∣∣∣∣g(x̃∗,K(ω), ω)

∣∣∣∣
W
≤

(
CG +

L

2

∣∣∣∣x̃∗,K − x̃
∣∣∣∣
∞

) ∣∣∣∣x̃∗,K − x̃∗
∣∣∣∣

W
. (3.14)

From assumption (a) of this theorem, we have that ∃K0 such that, ∀K ≥ K0,

L
∣∣∣∣x̃∗ − x̃∗,K

∣∣∣∣
∞ ≤ CG, A1

∣∣∣∣x̃∗ − x̃∗,K
∣∣∣∣
∞ + A2

∣∣∣∣x̃∗ − x̃∗,K
∣∣∣∣2
∞ ≤ A0

2
,



14 M. Anitescu

where A0, A1, and A2 are defined in (3.6). With the notations of Lemma 3.3, ΓK ≥
A0
2 , and thus from Assumption [A7], which ensures that A0 > 0, we get that GK ≥

A3
∆=

√
2A0
1

σ2
m
−c

> 0. Therefore, for K ≥ K0 and from (i),(ii), and (3.14) we get that

the conditions of Kantorovich’s theorem 3.2 are satisfied provided that

2LA2
3CGΛK

∣∣∣∣x̃∗ − x̃∗,K
∣∣∣∣

W
≤ 1, 8A3CG

∣∣∣∣x̃∗ − x̃∗,K
∣∣∣∣

W
≤ r.

From assumptions (a) and (b), it follows that these conditions are satisfied, by even-
tually choosing a larger K0, for all K ≥ K0. Therefore, Kantorovich’s theorem 3.2
applies to give the conclusion. The proof is complete. 2

Theorem 3.8. Assume that x̃∗(ω) is smooth (infinitely differentiable). Then
there exists K0 such that (SO(K)) has a solution, ∀K ≥ K0.

Proof The key of the proof is that we are able to choose q as large as necessary
in (2.2) for f = x̃∗. Choose q = t + m + 2. We obtain from (2.3) that

∣∣∣∣x̃∗ −ΠK
W x̃∗

∣∣∣∣
∞ ≤ mCS

∞∑
k=MK+1+1

||ck(f)||deg(Pk)t.

Since the number of polynomials of degree at most K is
(

m + K
m

)
[9] we obtain

from (2.2) and (2.1) that ||ck(f)|| ≤ CQ−q, and from the preceding displayed equation
and (2.3), that

∣∣∣∣x̃∗ −ΠK
W x̃∗

∣∣∣∣
∞ ≤ mCCS

∞∑
Q=K+1

(
m + Q

m

)
Q−(t+m+2)Qt

≤ CCS

(m− 1)!

∞∑
Q=K+1

Q−2

(
m + Q

Q

)m
K→∞−→ 0

and thus

limK→∞
∣∣∣∣x̃∗ −ΠK

W x̃∗
∣∣∣∣
∞ = 0. (3.15)

In addition, from (2.4) and (2.2) we obtain that

ΛK
∣∣∣∣x̃∗ −ΠK

W x̃∗
∣∣∣∣

W
≤ C

1
Kq

(
m + K

m

)d

≤ C
1

m!Kq−dm

(
m + K

K

)md

.

Therefore, if we choose q ≥ md + 1, we get that ΛK
∣∣∣∣x̃∗ − x̃∗,K

∣∣∣∣
W

K→∞−→ 0. From
(3.15), conditions (a) and (b) of Lemma 3.7 are satisfied. We apply Lemmas 3.7 and
3.6 to obtain that problem (SO(K)) is feasible for K ≥ K0 and has bounded level sets
and thus has a solution [19]. The proof is complete. 2

Theorem 3.9. Let m = 1 and W (x) =
√

1− x2
−1

(the Chebyshev polynomials
case). Then SO(K) has a solution for all K ≥ K0.

Proof From [A4], x̃∗(ω) is continuous and has bounded variation; therefore∣∣∣∣x̃∗(ω)−ΠK
W x̃∗(ω)

∣∣∣∣
∞ → 0 as K → ∞ [17, Theorem 1]. Also, from [A4], (2.4),

and (2.2) we obtain that

ΛK
∣∣∣∣x̃∗(ω)−ΠK

W x̃∗(ω)
∣∣∣∣

W
≤ K

1
2 C

1
K

K→∞−→ 0.
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Conditions (a) and (b) of Lemma 3.7 therefore are satisfied. Therefore Lemmas 3.7
and 3.6 apply to give that the problem (SO(K)) is feasible for K ≥ K0 and its objective
function has bounded level sets. Therefore (SO(K)) is solvable [19], and the proof is
complete. 2

Discussion Theorem 3.8 completely addresses the issue of solvability of (SO(K))
in the case of smooth solution functions, independent of the dimension of the problem.
The result for nonsmooth solution functions Theorem 3.9 is restrictive in terms of both
dimensions and polynomial type, and its extension is deferred to future research.

Finally, we approach the issue of limits of solutions of (SO(K)) for increasing K.
For convergence as K →∞ we need to invoke stronger assumptions, that allow us to
guarantee the existence of convergent subsequences.

Theorem 3.10. Assume that the conditions of Theorem 3.8 are satisfied, that the
sequence of solutions of the problem (SO(K)) satisfies the Kuhn-Tucker conditions,
and that there exists a CX > 0 such that the solution and multiplier sequences (λK

k ,
xK

k ) satisfy

MK∑
k=0

∣∣∣∣λK
k

∣∣∣∣ deg(Pk)t < CX ;
MK∑
k=0

∣∣∣∣xK
k

∣∣∣∣ deg(Pk)t < CX ,

where t is the parameter from (2.3). Define λ̃K(ω) =
∑MK

k=0 λK
k Pk(ω) and x̃K(ω) =∑MK

k=0 xKPk(ω). Then the sequence (x̃K(ω), λ̃K(ω)) has a uniformly convergent sub-
sequence. Any limit (x̂(ω), λ̂(ω)) of such a subsequence satisfies the nonlinear system
of equations (3.1).

Proof From (2.3) it follows that the sequence (λ̃K(ω), x̃K(ω)) satisfies

∀ω1, ω2 ∈ Ω


∣∣∣∣∣∣λ̃K(ω1)

∣∣∣∣∣∣ ,
∣∣∣∣x̃K(ω1)

∣∣∣∣ ≤ CSCX ,∣∣∣∣∣∣λ̃K(ω1)− λ̃K(ω2)
∣∣∣∣∣∣ ,

∣∣∣∣x̃K(ω1)− x̃K(ω2)
∣∣∣∣ ≤ CSCX ||ω1 − ω2|| .

Therefore the families λ̃K(ω), x̃K(ω) are equicontinuous and equibounded. We can
apply the Arzela-Ascoli theorem [15, Theorem 6.41] to determine that there exists a
uniformly convergent subsequence, x̃Kl , λ̃Kl with a corresponding limit pair. Let (x̂, λ̂)
be such a limit function pair, which must also be continuous because the convergence
of the subsequence of Lipschitz functions is continuous. Using Theorem (3.1), we get
that x̃Kl , λ̃Kl satisfies the equation (3.2), for l ≥ 0. Using assumptions [A2] and [A4],
we can take the limit in that equation and obtain that〈

Pk(ω)
(
∇xf(x̂(ω), ω) +

(
λ̂(ω)

)T

∇xg(x̂(ω), ω)
)〉

= 0n, k ≥ 0,

〈Pk(ω)g(x̂(ω), ω)〉 = 0p, k ≥ 0.

From Bessel’s identity (2.1), we get that∣∣∣∣∣∣(∇xf(x̂(ω), ω) + λ̂(ω)T∇xg(x̂(ω), ω)
)∣∣∣∣∣∣2

W
+ ||g(x̂(ω), ω)||2W = 0,

which, in turn, proves our claim. The proof is complete. 2

Discussion Of course, it would be important to prove the convergence of the ap-
proximating sequences x̃K(ω) and λ̃K(ω) without assuming that they exhibit sufficient
smoothness in the limit. For this initial investigation, we provide this limited result,
and we defer the issue of extending it to further research. A promising approach seems
to be to quantify the uniform validity with ω of the second order sufficient conditions
for problem (O) and infer the smoothness in the limit from it.
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4. Applications and Numerical Examples. Motivating our investigation was
the study of parametric eigenvalue problems as they appear in neutron diffusion prob-
lems in nuclear reactor criticality analysis [8]. We thus investigate how our develop-
ments apply to eigenvalue problems.

4.1. Parametric Eigenvalue Problems. In the following, we study our for-
mulation for two parametric eigenvalue problems, of sizes n = 2 and n = 1000. In the
formulation of the problem for both cases is (Q + ωDQ)x (ω) = λ (ω) x (ω) , where Q
and DQ are matrices of size n, λ (ω) and x (ω) are the smallest eigenvalue and the
corresponding eigenvector of the matrix (Q + ωDQ). Our theory is applied via the
interpretation of the problem as x (ω) = arg minx(ω)T x(ω)=1 x (ω)T (Q + ωDQ) x (ω),
where λ (ω) is the Lagrange multiplier of the constraint, all for a fixed value of ω.
Here, ω ∈ [−1, 1], and the stochastic finite element problem is constructed by using
either Legendre or Chebyshev polynomials [9].

As in our theoretical developments, the problem to be solved has n × (MK + 1)
unknowns and MK + 1 constraints, and, with the notation ΦK = {0, 1, . . . ,MK}, can
be stated as

min{xi}i∈ΦK

〈(∑MK

i=0 xiPi (ω)
)T

(Q + ωDQ)
(∑MK

i=0 xiPi (ω)
)〉

s.t.∀k ∈ ΦK 〈(∑MK

i=0 xiPi (ω)
)T (∑MK

i=0 xiPi (ω)
)

Pk (ω)
〉

= 〈Pk (ω)〉.

The problem is set up by computing the terms involved after breaking up the parenthe-
ses, computing the terms 〈ωPi (ω) Pj (ω)〉 = Li,j and 〈Pi (ω) Pj (ω) Pk (ω)〉 = L̂i,j,k.
This procedure was carried out by numerical quadrature in MATLAB, after which,
the resulting problem became

min
K∑

i=1

xiQxi +
K∑

i,j=1

LijxiDQxj

s.t.
K∑

i,j=1

L̂ijkxixj = Eω [Pk (ω)] k = 1, 2, . . . ,K.

The problem was coded in AMPL [11] and solved by using the KNITRO interior point
solver [22]. Once the problem was solved, the parametric approximation of the solution

and of the multiplier were constructed as x̃ (ω) =
K∑

i=1

xkPk (ω), λ (ω) =
K∑

i=1

λkPk (ω).

It is immediate that the problem satisfies assumptions [A2]–[A6]. Assumption
[A1] is satisfied only if the resulting matrix is positive definite for any value of ω,
which can be ensured if one adds a suitable fixed multiple of the identity to the
matrix. In that case [A1] is satisfied with γ = 1 and χ(r) = r2. Since the effect of
that is only to shift the λ values, we can assume without loss of generality that [A1]
is satisfied. [A7] is a difficult assumption to verify numerically, and like any small
variation assumptions, it is bound to be too conservative.

4.2. Problems with Inequality Constraints. It is well known that we can
transform an inequality constraint g1(x, ω) ≤ 0 into an equality constraint by using
a slack s1 and representing the inequality as g1(x, ω) + s2

1 = 0 [2]. The resulting
problem can be represented as (O), and our approach can be used to solve it. To
generate the problem (SO(K)), we use a parameterization for the slacks s1(ω) =
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Fig. 4.1. The case n = 2. The eigenvector
angle error

Fig. 4.2. The case n = 2. The eigenvalue.

∑K
k=0 Pk(ω)s1,k. When we enforce the constraints of (SO(K)), we get expressions

similar to the constraints of the eigenvalue problem in the preceding section, which
means that the effect of s1 on the constraints can be represented finitely in the spectral
basis. Therefore, if the functions of the inequality constraints can be represented
finitely in the spectral basis, the introduction of slacks will not destroy that. This
means our approach and Theorem 3.1 applies to inequality constraints as well, once
we have formulated them as slacks. Theorem 3.8 cannot be expected to apply because
the solution x̃∗(ω) is not smooth in general when inequality constraints are present.
Theorem 3.9 may apply but it is limited to the case m = 1. For the convergence
analysis of problems with inequality constraints, further analysis is necessary.

4.3. The n = 2 Problem. For this problem, we chose Q =
[

2 1
1 2

]
; DQ =[

1 0.4
0.4 0.2

]
, and we use only Legendre polynomials. We have computed the mini-

mum eigenvalue and the corresponding eigenvector as a function of the parameter ω,
both by solving the eigenvalue problem at 100 equally spaced points in the interval
between minus 1 and 1, and by using our constrained optimization formulation the
stochastic finite element method. The results of the two approaches have been plotted
in Figure 4.1 for the angle between the eigenvectors obtained by the two approaches
and in Figure 4.2 for the eigenvalue. We call here, in Figures 4.1-4.2, and subsequently,
the first approach simulation and the second approach “SFEM”. It can be seen that
the error for the cosine of the angle between eigenvalues is in the seventh decimal
place, and the eigenvalue results are virtually indistinguishable. Note that the size of
the variation for which we were computing the eigenvector reaches half the size of the
maximum element in the original matrix, so the variation is far from being considered
small. The results show the soundness of our approach and provide good evidence
for convergence. In addition, the solution of the problem seems to be smooth, so the
conditions for both Theorems 3.8 and 3.10, as well as their conclusions, appear to be
satisfied.
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Fig. 4.3. The case n = 1000. The eigenvalue.

4.4. The n = 1000 Problem. For this problem, we chose

Qi,j =


1 i = j = 1
1 i = j = n
−1 |i− j| = 1
2 1 < i = j < n
0 otherwise

, DQ i,j =
{

2 i
n

n−i
n cos

(
i
n

)
i = j

0 otherwise .

This problem mimics a one-dimensional criticality analysis of the neutron flux in a
nuclear reactor [8]. Again, we computed a minimum eigenvalue and the corresponding
eigenvector as a function of the parameter ω both by solving the eigenvalue problem
at 100 equally spaced points in the interval between minus 1 and 1, as well as by using
our constrained optimization formulation of the stochastic finite element method. In
this case the calculation was done with both Chebyshev and Legendre polynomials.

The results are displayed in the Figures 4.3-4.4 for the match between the eigen-
values, as well as the angle between the eigenvectors. We see that the eigenvalues
match very well, with a relative error below 5% (with respect to the vector infinity
norm). Note that the optimization problem was solved in 8 seconds for the Legendre
polynomials and 13 seconds for the Chebyshev polynomials, whereas the simulated
eigenvalues took more than 1,300 seconds to compute on the same machine. Also
note that the possible objection that MATLAB is much slower for the simulation
approach does not apply here, since we have timed only the call to the eigenvalue
function in MATLAB, which is an external call to a compiled function. Of course,
the numbers are relatively difficult to compare, given that we did not truly try to
find the minimum number of simulated values with which to evaluate the parametric
dependence of the eigenvalue to the same tolerance level. Nonetheless the results show
the tremendous advantage that our approach has for the efficient evaluation of the
parametric dependence of the minimum eigenvalue.
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Fig. 4.4. The case n = 1000: eigenvector angle and residual.

At a first glance to the left panel of Figure 4.4, our approach did much worse in
calculating the behavior of the eigenvector, in effect, the variable of our optimization
problem. The figure seems to show errors in the cosine as large as 60%. A deeper
investigation revealed that the cusps in the figure have to do with the degeneracy of
the eigenvalue problem at those ω values. Indeed, if instead we are evaluating the
residual error

∥∥∥(Q + ωDQ) x̃ (ω)− λ̃ (ω) x̃ (ω)
∥∥∥, we see in the right panel of Figure

4.4 that that residual is always below 0.035 and 97% of the time below 0.02 for the
Legendre case and is always below 0.025 for the Chebyshev case. By comparison, if
one would compute the exact minimum eigenvalue at the points minus 1, 1 and at
the coordinates of the three cusps and used a linear interpolation with these nodes
and the minimum eigenvectors obtained by simulation (denoted by the “Black box” in
Figure 4.4) we see that the error would actually be quite a bit worse, by about a factor
of two, and on average by a factor of four. While such comparisons must be carried
out on much larger classes of problems, we find here evidence that the optimization
based SFEM approach may be much more robust than black-box algorithms, at least
for parametric eigenvalue problems. We call a “black-box” algorithm for parametric
analysis a non-intrusive algorithm that uses only input-output information of the non-
parametric problem (in our example, an eigenvalue solver), in order to generate the
parametric approximation. Such algorithms are perhaps the easiest to implement for
parametric analysis and uncertainty quantification [10]. Our example shows that such
algorithms may encounter difficulties for a small dimension of the parameter space for
problems of the type presented here, in addition to the well-documented difficulties
for a large dimension of a parameter space [10].

Concerning the validation of the theoretical results, we note that the conditions
of Theorem 3.9 are satisfied for the Chebyshev polynomials case, though the Legendre
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polynomials also seems to provide good approximating properties. The latter is rele-
vant since the Legendre polynomials are the choice in the widespread case of uniform
distribution.

5. Conclusions. We have shown that, in the study of the parametric depen-
dence of problems that originate in optimization problems, the stochastic finite el-
ement (SFEM) method can be formulated as an optimization problem. The major
advantage of our approach is that the resulting nonlinear problem has a solution that
can be found by optimization algorithms.

The formulation will include constraints if the original problem had any, and the
stochastic finite element approximation to the parametric dependence of the Lagrange
multipliers is obtained implicitly from the solution, rather than explicitly as one would
expect from the typical stochastic finite element formulation. We have shown that,
under certain assumptions, the SFEM problem is well-posed and that the sequence of
SFEM approximations of increasing degree converges to a solution of the parametric
problem. In particular, if the constraints are linear, a solution of the SFEM approach
exists without a small variation assumption of the solution x̃∗(ω) of the parametric
problem (O).

In the case where our approach is used for studying the parametric dependence
of the solution of minimum eigenvalue problems, we have shown that our method can
be orders of magnitude faster compared to the simulation-based exploration of the
parameter space. In addition, we have evidence that the method may be quite a bit
more accurate than worst-case choices of simulation based on black-box exploration
of the parameter space. The resulting problem is not convex, and it is difficult to
guarantee that the global minimum can be actually found by the software. Nonetheless
the software that we used KNITRO showed no difficulty in actually determining the
minimum value.

Several issues remain to be analyzed. These include being able to guarantee
that the minimum found is actually a global minimum, determining efficient ways
of choosing the polynomial basis functions for a large number of dimensions of the
parameter space, efficiently solving the larger coupled optimization problem, showing
that the limit of solutions of (SO(K)) is sufficiently smooth rather than assuming it in
Theorem 3.10, and providing convergence results for inequality-constrained problems
and problems without smooth solutions.
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